Find Inefficiencies and Rapid Model Profiling with CentML DeepView

ASPLOS '23 Workshop, March 25th

Yubo Gao <<u>ybgao@centml.ai</u>> CentML Inc, University of Toronto

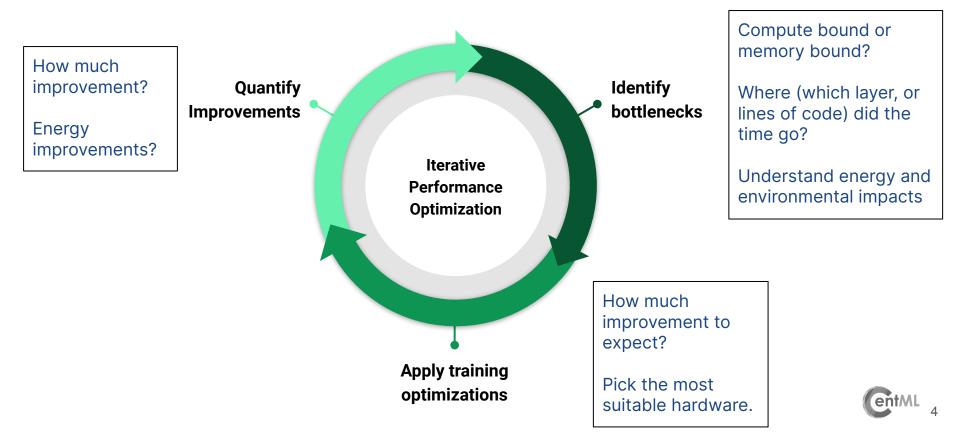
Agenda

1. Introduction to training optimizations

[1:50pm - 2:30pm]

- a. Why do we care?
- b. What are the common optimizations?
- 2. Performance debugging with DeepView [2:30pm 3pm]
 - a. Visually identify performance bottlenecks
 - b. Value of performance prediction in optimization workflow

Why optimize?


Increasing resources required used to train large models.

Resource underutilization is a significant problem:

- Observed average GPU utilization below 30% at a large AI research compute cluster.
- Significant resource and energy waste.
- Low utilization leads to lower throughput (increased job completion time).

Typical training optimization workflow

Environment Setup

Please follow "Environment Setup" at:

https://centml.github.io/asplos23-tutorial/deepview.html

Interactive Demo

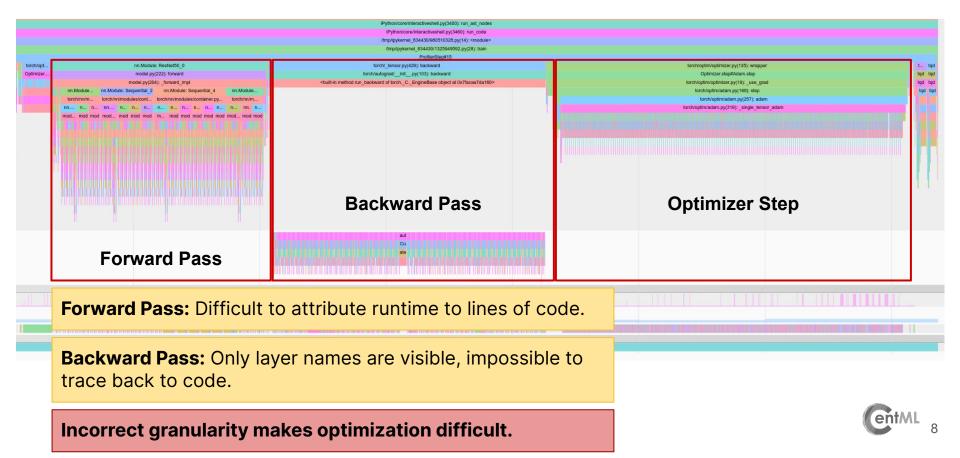
Exploring system optimizations for DL training

Existing DL Profilers

nvprof Nsight compute Nsight Systems dlprof

Intel vTune

Torch.profile


PyTorch Lightning profiler

TensorBoard profiler

- 1. Incorrect granularity
- 2. Lack of interactivity
- 3. Lack of predictive capabilities

Incorrect granularity

Incorrect granularity

Top 10 GPU Ops

GPU Time (ns)	Op Name	Ор Туре	Calls	TC Eligible	Using
165,437,894	gradients/resnet50/conv2d/conv2d/Conv2D_grad/Conv2DBackprop Filter	Conv2DBackp ropFilter	21	~	×
139,735,214	gradients/resnet50/conv2d/BatchNorm/FusedBatchNormV3_grad/F usedBatchNormGradV3	FusedBatchNo rmGradV3	21	×	×
139,549,652	resnet50/conv2d/conv2D	Conv2D	21	~	×
106,125,030	resnet50/btlinck_block_2_0/bottleneck_2/conv2d/Conv2D	Conv2D	21	~	×
93,436,444	gradients/resnet50/btlnck_block_1_0/bottleneck_2/conv2d/Conv2D _grad/Conv2DBackpropInput	Conv2DBackp ropInput	21	~	~
84,582,994	gradients/resnet50/btlnck_block_0_0/bottleneck_3/BatchNorm/Fus edBatchNormV3_grad/FusedBatchNormGradV3	FusedBatchNo rmGradV3	21	×	×
84,547,887	gradients/resnet50/btlnck_block_0_0/shortcut/conv2d/BatchNorm/F usedBatchNormV3_grad/FusedBatchNormGradV3	FusedBatchNo rmGradV3	21	×	×
84,367,698	gradients/resnet50/btlnck_block_0_1/bottleneck_3/BatchNorm/Fus edBatchNormV3_grad/FusedBatchNormGradV3	FusedBatchNo rmGradV3	21	×	×
83,685,782	gradients/resnet50/btlnck_block_0_2/bottleneck_3/BatchNorm/Fus edBatchNormV3_grad/FusedBatchNormGradV3	FusedBatchNo rmGradV3	21	×	×
73,962,717	gradients/resnet50/btlnck_block_1_0/bottleneck_2/conv2d/Conv2D _grad/Conv2DBackpropFilter	Conv2DBackp ropFilter	21	~	~

Input Op statistics

Input Op	Count	Total Time (in ms)	Total Time (as % of total input-processing time)	Total Self Time (in ms)	Total Self Time (as % of total input-processing time)	Category
Iterator::Prefetch::Generator	80	89,282	43.3%	89,282	43.3%	Preproces sing
Iterator::Prefetch	88	80,228	38.9%	80,228	38.9%	Preproces sing
Iterator::Model::Prefetch::Rebatch::Prefetch::MapAndBatch	10	11,161	5.4%	11,161	5.4%	Preproces sing
Iterator::Model::Prefetch	87	11,161	5.4%	11,161	5.4%	Preproces sing
Iterator::Model::Prefetch::Rebatch::Prefetch	10	11,160	5.4%	11,160	5.4%	Preproces sing
Iterator::Model::Prefetch::Rebatch::Prefetch::MapAndBatch::ShuffleAndRepeat:: ParallelInterleaveV3[94]::FlatMap[0]::TFRecord	3	868	0.4%	868	0.4%	Advanced file read
Iterator::Model::Prefetch::Rebatch::Prefetch::MapAndBatch::ShuffleAndRepeat:: ParallelInterleaveV3[91]::FlatMap[0]::TFRecord	3	743	0.4%	743	0.4%	Advanced file read
Iterator::Model::Prefetch::Rebatch::Prefetch::MapAndBatch::ShuffleAndRepeat:: ParallelInterleaveV3[97]::FlatMap[0]::TFRecord	3	521	0.3%	521	0.3%	Advanced file read

NVIDIA DLProf [1]

Tensorflow Profiler [2]

^

Lack of interactivity

	DEVELOPER TOOLS Documentation	Q. Search	Tutorialis > PyTorch Recipes > PyTorch Profiler	Shortcuts
Nsight Systems v2023.1.1	Note that you must run the CLI on Wi	ndows as administrator.	Note that we can use record_function context manager to label arbitrary code ranges with user provided names (model_inference is used as a label in the example above).	PyTorch Profiler
User Guide	1.2. Command Line Options		Profiler allows one to check which operators were called during the execution of a code range wrapped with a profiler context	Introduction
1.1. Installing the CLI on ⇒ Your Target	The Nsight Systems command lines of	can have one of two forms:	manager. If multiple profiler ranges are active at the same time (e.g. in parallel PyTorch threads), each profiling context manager tracks	Setup + Steps
	nsys [global_option]		only the operators of its corresponding range. Profiler also automatically profiles the async tasks launched with torch.jitfork and (in case of a backward pass) the backward pass operators launched with backward() call.	Learn More
> 1.3. CLI Command Switches	or		Let's print out the stats for the execution above:	
1.4. Example Single Command Lines 1.5. Example Interactive CLI Command Sequences	<pre>nsys [command_switch][optional application_options]</pre>	<pre>1 command_switch_options][application] [optional</pre>	<pre>print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))</pre>	
1.6. Example Stats Command Sequences 1.7. Example Output from stats Option	parameters should follow the switch a	nsitive. For command switch options, when short options are used, the after a space; e.gs process-tree. When long options are used, qual sign and then the parameter(s); e.gsample=process-tree.	The output will look like (omitting some columns):	
1.8. Importing and Viewing Command Line Results Files ▷ 1.9. Using the CLI to Analyze MPI Codes	launched process will be terminated v the user specifies thekill none optio	you launch a process from the command line to begin analysis, the when collection is complete, including runs withduration set, unless n (details below). The exception is that if the user uses NVTX,	¢	
\rhd 2. Profiling from the GUI		control the duration, the application will continue unlesskill is set.	Ø Name Self CPU CPU total CPU time avg Ø of Calls	
> 3. Export Formats		ncurrent analysis by using sessions. Each Nsight Systems session is inds that define one or more collections (e.g. when and what data is	# model_inference 5.509ms 57.503ms 57.503ms 1	
4. Report Scripts 5. Migrating from NVIDIA nvprof	collected). A session begins with eithe command, when a profile command to	er a start, launch, or profile command. A session ends with a shutdown erminates, or, if requested, when all the process tree(s) launched in	θ aten::conv2d 231.090us 31.931m 1.597ms 20 θ aten::convolution 250.090us 31.700ms 1.595ms 20 θ aten::convolution 350.090us 31.737ms 20	
 Profiling in a Docker on Linux Devices 	the session exit. Multiple sessions car	n run concurrently on the same system.	# aten::mkldnn_convolution 30.838ms 31.114ms 1.556ms 20	
▷ 7. Direct3D Trace	1.2.1. CLI Global Options	<u>s</u>	# aten::batch_norm 211.000us 14.693ms 734.650us 20 # aten::_batch_norm_impl_index 319.000us 14.482ms 724.100us 20	
8. WDDM Queues			# aten::patch_nosmmpinosm 9.229ms 14.109ms 765.450us 20	
9. WDDM HW Scheduler > 10. Vulkan API Trace	Short Long	Description	# aten::mean 332.000us 2.631ms 125.286us 21	
 IU. YUKAN APT IFACE I1. Stutter Analysis I2. OpenMP Trace 	-hhelp	Help message providing information about available command switches and their options.	0 aten::select 1.668ms 2.292ms 8.988us 255 0 Self CPU time total: 57.549ms	
D 13. OS Runtime Libraries Trace 14. NVTX Trace	-vversion	Output Nsight Systems CLI version information.		
D 15. CUDA Trace 16. OpenACC Trace	1.3. CLI Command Switches		Here we see that, as expected, most of the time is spent in convolution (and specifically in mkldnn_convolution for PyTorch compiled	
 P 17. OpenGL Trace 18. Custom ETW Trace 19. GPU Metrics 	and begin analysis with options speci	terface can be used in two modes. You may launch your application fied to the nsys profile command. Alternatively, you can control the ection using interactive CLI commands.	with MKL-DNN support). Note the difference between self cpu time and cpu time - operators can call other operators, self cpu time excludes time spent in children operator calls, while total cpu time includes it. You can choose to sort by the self cpu time by passing sort; by="self_cpu_time_total;" into the table call.	

NVIDIA Nsight Systems

Interactive Profiler [3]

Identifies performance bottlenecks

Enables rapid iterative profiling

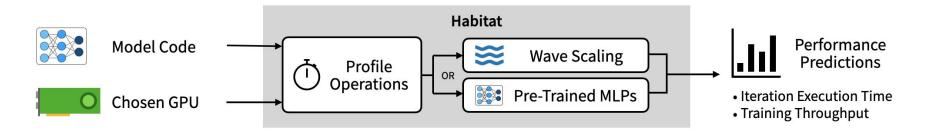
Quantifies energy consumption and environmental impacts of training jobs.

Runtime Predictor [4]

Predicts a deep neural network's training iteration execution time on a different GPU.

Recommends the most cost/time effective hardware option for your workload

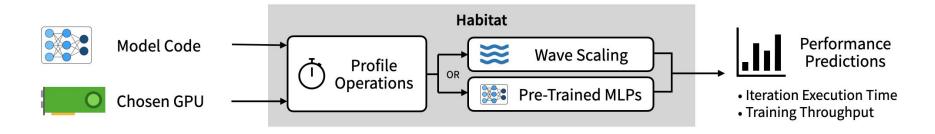
[3]: Skyline: Interactive In-Editor Computational Performance Profiling for Deep Neural Network Training, Geoffrey Yu, et. al.
 [4]: Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training, Geoffrey Yu, et. al.



Interactive Demo

Iterative Profiling with CentML DeepView

GPU Runtime Predictor (DeepView.Predict)


Pick the best GPU for your training job, whether it is:

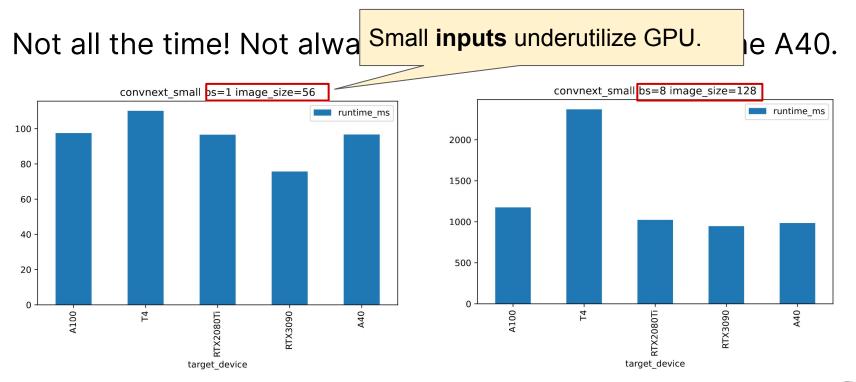
- Deciding which new GPU to purchase for your local workstation
- Which cloud GPU instance to pick
- Efficiently schedule jobs in a heterogeneous GPU cluster

Tedious to benchmark model on all the available GPUs.

GPU Runtime Predictor (DeepView.Predict)

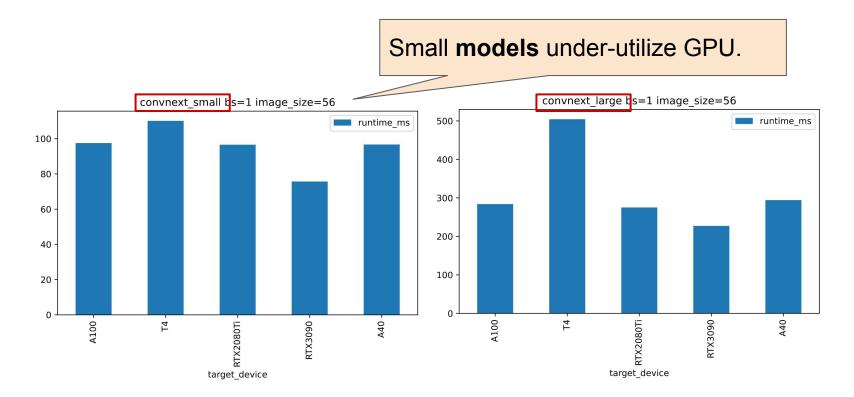
Wave Scaling - If the same kernels execute on the source and target GPUs, then scale based on hardware parameters.

Pre-Trained MLPs - If not, learn runtimes of different operators with a pretrained model.


GPU Runtime Predictor (DeepView.Predict)

Why predict? Why not

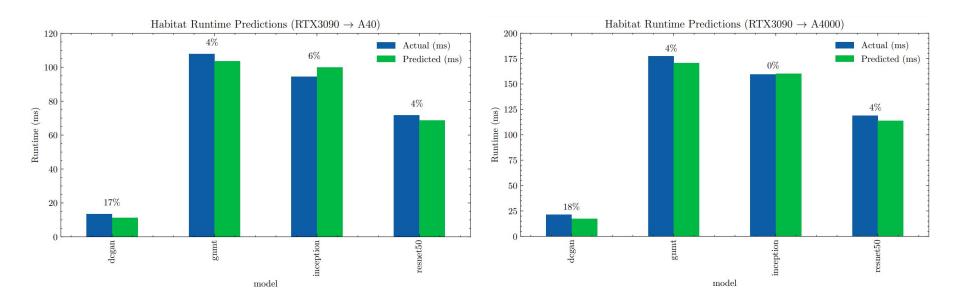
- → Measure the performance directly?
- → Apply heuristics?
- → Use standard benchmarks?
- → Always use the best available GPU?



Aren't more powerful GPUs better?

Aren't more powerful GPUs better?

Which GPUs are supported?


Generation \ Use Case	Desktop/Consumer	Workstation/Server
Pascal	GTX1080Ti	Quadro P4000 P4 P100
Volta		V100
Turing	RTX2070 RTX2080Ti	Quadro RTX4000
Tesla		T4
Ampere	RTX3090	A100 A40 A4000
Hopper		H100 (coming so

- Beta

- Deprecated / Not available

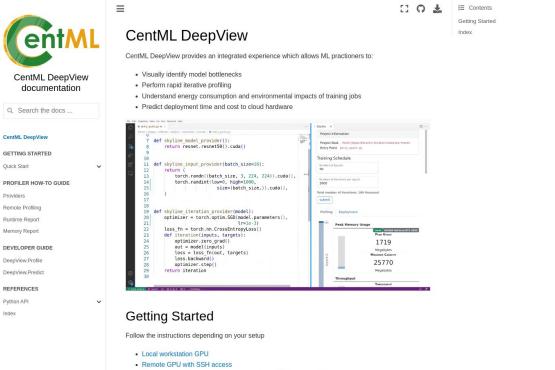
How accurate is DeepView.Predict?

Prediction errors are generally no more than 10%.

Cloud Deployment

Profiling Deployment

Deployment Target


Estimation for 4 million total iterations

Providers

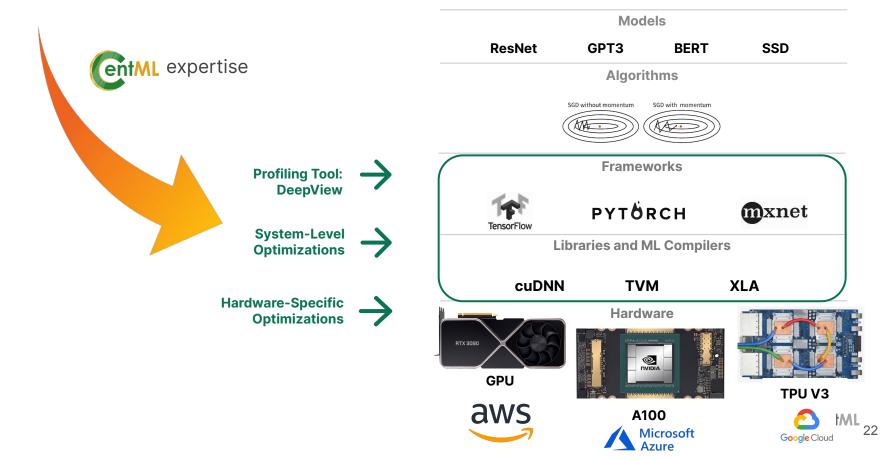
2	n1-standard-1	
	Estimated Cost: s Estimated Trainir	g Time: 3.4 Hours
GPU	Num. GPU	VRAM

· Clusters, containers, and other setups where SSH is not possible

DeepView.Profile

DeepView.Predict

Deepview.Profile is our free and open source tool provides easier way to identify bottlenecks and perform rapid iterative profiling for Deep Learning. To find out more, visit DeepView.Profile


Theme by the Executable Book Project

DeepView.Predict is a tool that predicts a deep neural network's training iteration execution time on a given GPU. It currently supports PyTorch. To find out more, visit DeepView.Predict

Get started with DeepView at docs.centml.ai!

What we do: system-level optimizations

Additional Optimizations: Horizontal Fusion

Horizontally fused training array for efficient training

 Best for training small models + hyper-parameter tuning

Thank you!

To learn more about DeepView, visit docs.centml.ai

Also check us out at **centml.ai**,

or contact us at ybgao@centml.ai

Please provide your feedbacks at:

