~

Find Inefficiencies and
Rapid Model Profiling SN
with CentML DeepView ' *

ASPLOS ‘23 Workshop, March 25th B

Yubo Gao <
CentML Inc, University of Toronto

mailto:ybgao@centml.ai

Agenda

1. Introduction to training optimizations [1:50pm - 2:30pm]

a. Why do we care?
b. What are the common optimizations?

2. Performance debugging with DeepView [2:30pm - 3pm]

a. Visually identify performance bottlenecks
b. Value of performance prediction in optimization
workflow

/ 7
e

=1 4

Why optimize?

Increasing resources required used to train large models.
Resource underutilization is a significant problem:

e Observed average GPU utilization below 30% at a large Al
research compute cluster.

e Significant resource and energy waste.

e Low utilization leads to lower throughput (increased job
completion time).

/ 7
e

=1 4
==

Typical training optimization workflow

Compute bound or

memory bound?
How much
improvement? Quantify Identify Where (which layer, or
Improvements bottlenecks lines of code) did the
Energy time go?
improvements?
Iterative

Understand energy and
environmental impacts

Performance
Optimization

How much
improvement to
expect?

Apply training _
optimizations Pick the most
P suitable hardware. @ﬂ

Environment Setup

DeepView

Please follow “Environment Setup” at:
https://centml.qithub.io/asplos23-tutorial/deepview.html

https://centml.github.io/asplos23-tutorial/deepview.html

Interactive Demo

Exploring system optimizations for DL training

G
ent
it

Existing DL Profilers

n\\\l/|[/):\| A N te I . O PyTorch

nvprof Intel vTune Torch.profile
Nsight compute
Nsight Systems PyTorch Lightning
diprof profiler

1. Incorrect granularity
2. Lack of interactivity
3. Lack of predictive capabilities

TensorFlow

TensorBoard
profiler

///
g e

=1 4

Incorrect granularity

IPython/coralinteractiveshell.py(3400): run_ast_nodes
IPython/coreinteractiveshell py(3460): run_code
NmpApykernel_834430/980510328.py(14): <module>
AmpAipykemel_834430/1325949502 py(28): train

torchiopt... nn.Module: ResNet50_0 torctV_tansor.py(429): backward torchloptim/optimizer,py(135): wrapper t. tqd
Optimizer.... model.py(222): forward torch/autograd/_Init__py(103): backward Optimizer step#Adam step tqd tqd
madel.py(204): _forward_impl <bulitn method run_backward of torch._C._EngineBase object at Ox7facaa7da160> torchioptimioptimizer.py(19): _use_grad tqd tqd
nnModule... nn.Module: Sequential 2 nn.Module: Sequential 4 nn.Modue... torchioptim/adam py(168): step 1qd 1qd

toreh/na/m... forchnnim... torch/optim/adam. py(257): adam

S 2l n.. (s By o 28 0[] i @ torchioptim/adam.py(319): _single_tensor_adam
mod... mod mod mod... mod mod mod m... mod mod mod mod mod mod... mod mod

Backward Pass Optimizer Step

B2

Forward Pass

Forward Pass: Difficult to attribute runtime to lines of code.

Backward Pass: Only layer names are visible, impossible to
trace back to code.

: o (it
Incorrect granularity makes optimization difficult. - 8

Incorrect granularity

GPU

Time TC Using

(ns) Op Name Op Type Calls Eligible Tc

0_ordC c
165,437,894 92 o 2 v x
_gradF
9T s edBatchNomGradv3 mGrdv3 2! x x
139,549,652 resnetS0icom2diconv2d/Conv2D Conv2D 2 v x
106,125,030 resnets0ibtinck_block_2_0/bottieneck_2/conv2d/Cony2D Conv2D 2 v x
:_block_1_(& C
93436448 gragiConv20Backpropinput (oploput ! ¥ Y
:_block_0_ (.
84562994 g e 2 x x
block 0
7 X 2
il g 3 mGraav3 & % X
o437 638 SrFEnISHesnetsODtinck_block_0_tibotteneck_Y/BatchNom/Fus FusedBatchNo " .
d g mGraava
#3.685.782 Sr9EnISHesnetsODtnck_block_0_2atteneck_YBatchNom/Fus | FusedBatchNo 3 z
3_g mGraava
block_1, 2Acom2diCon2D
. _block_1_ &

7392717 gragiConv2DBackpropFiter topFitter 2 Y %

NVIDIA DLProf m

Input Op statistics
Input Op
Iterator::Prefetch::Generator

Iterator::Prefetch

refetch::Rebatch::P ndBatch

Iterator::Model::Prefetch

Iterator::Model::Prefetch::Rebatch::Prefetch

:Prefetct

ParallelinterleaveV3[94)

ebatch::Pt

latMap[0]::TFRecord

ndRep

ParallelinterieaveV3[91]::FlatMap[0]: TFRecord

ParallelinterleaveV3[97]::FlatMap[0]:: TFRecord

Coun

Total Time

(in ms)

89,282

80,228

11,161

11,161

11,160

868

743

521

Total Time (as % of total

input-processing time)

43.3%

38.9%

0.4%

0.4%

Total Self

Time (in ms)

89,282

80,228

11,161

11,161

11,160

868

521

Tensorflow Profiler 2

[1]: https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/index.html

[2]: https://www.tensorflow.org/guide/profiler

Total Self Time (as % of total

input-processing time)

43.3%

38.9%

5.4%

54%

5.4%

0.4%

0.4%

0.3%

Category

Preproces
sing
Preproces
sing
Preproces
sing
Preproces
sing
Preproces
sing
Advanced
file read
Advanced
file read
Advanced

file read

CentiL

ack of interactivity

A DEVELOPER
nvibia ZONE

Nsight Systems v2023.1.1

User Guide

7 1. Profiling from the CLI
1.1. Installing the CLlon =
Your Target

¥ 1.2. Command Line Options
1.2.1. CUI Global Options
& 1.3. CLI Command Switches
1.4. Example Single
iand Lines
1.5. Example Interactive CLI
Command Sequences
1.6. Example Stats

1.7. Example Output from -~
Option
1.8. Importing and Viewing
Command Line Resuts Files
& 1.9. Using the CLI to Analyze
MPI Codes

& 2. Profiling from the GUI
& 3. Export Formats
4. Report Scripts
5. Migrating from NVIDIA
nvprof
6. Profiling in a Docker on
Linux Devices
©>7. Direct3D Trace
8. WDDM Queues
9. WDDM HW Scheduler
& 10. Vulkan API Trace
& 11. Stutter Analysis
12. OpenMP Trace
> 13. 05 Runtime Libraries Trace
14. NVTX Trace
& 15. CUDA Trace
16. OpenACC Trace
& 17. OpenGL Trace
18. Custom ETW Trace
19. GPU Metrics

DEVELOPER TOOLS Documentation

Note that you must run the CLI on Windows as administrator.

1.2. Command Line Options

The Nsight Systems command lines can have one of two forms:
nsys [global_option]

or

nsys [command_switch][optional command_switch_options][application] [optional
application_options]

All command line options are case sensitive. For command switch options, when short options are used, the
parameters should follow the switch after a space; e.g. -s process-tree. When long options are used,
the switch should be followed by an equal sign and then the parameter(s); e.g. --sample=process-tree .

For this version of Nsight Systems, if you launch a process from the command line to begin analysis, the
launched process will be terminated when collection is complete, including runs with --duration set, unless
the user specifies the --kill none option (details below). The exception is that if the user uses NVTX,
cudaProfilerStart/Stop, or hotkeys to control the duration, the application will continue unless -kill is set.

The Nsight Systems CLI supports concurrent analysis by using sessions. Each Nsight Systems session is
defined by a sequence of CLI commands that define one or more collections (e.g. when and what data is
collected). A session begins with either a start, launch, or profile command. A session ends with a shutdown
command, when a profile command terminates, or, if requested, when all the process tree(s) launched in
the session exit. Multiple sessions can run concurrently on the same system.

1.2.1. CLI Global Options

Short |Long Description

-h --help Help message providing information about available command

switches and their options.

-v --version

Output Nsight Systems CLI version information.
1.3. CLI Command Switches
The Nsight Systems command line interface can be used in two modes. You may launch your application

and begin analysis with options specified to the nsys profile command. Alternatively, you can control the
launch of an application and data collection using interactive CLI commands.

NVIDIA Nsight Systems

s > PyTorch Profiler 5

Note that we can use record_function context manager to label arbitrary code ranges with user provided names (model_inference
is used as a label in the example above).

Profiler allows one to check which operators were called during the execution of a code range wrapped with a profiler context
manager. If multiple profiler ranges are active at the same time (e.g. in parallel PyTorch threads), each profiling context manager tracks
only the operators of its corresponding range. Profiler also automatically profiles the async tasks launched with torch. jit. _fork and

(in case of a backward pass) the backward pass operators launched with backnard() call.

Let’s print out the stats for the execution above:

print (prof.key_averages().table(sort_by="cpu_tine_total", row_limit=10))

The output will look like (omitting some columns):

aten: :conv2d

:convoluti

volut.

convolution

Here we see that, as expected, most of the time is spent in convolution (and specifically in nkldnn_convolution for PyTorch compiled
with MKL-DNN support). Note the difference between self cpu time and cpu time - operators can call other operators, self cpu time
excludes time spent in children operator calls, while total cpu time includes it. You can choose to sort by the self cpu time by passing
sort_by="self_cpu_time_total” intothe table call.

Shortcuts

PyTorch Profiler

Introduction

Learn More

PyTorch Profiler

ent

10

DeepView

Interactive Profiler [3]
Identifies performance bottlenecks
Enables rapid iterative profiling
Quantifies energy consumption

and environmental impacts of
training jobs.

Runtime Predictor [4]

Predicts a deep neural network's
training iteration execution time on
a different GPU.

Recommends the most cost/time
effective hardware option for your
workload

[3]: Skyline: Interactive In-Editor Computational Performance Profiling for Deep Neural Network Training, Geoffrey Yu, et. al.
[4]: Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training, Geoffrey Yu, et. al.

(e
ent
7= 4

11

Interactive Demo

Iterative Profiling with CentML DeepView

G
ent
it

12

GPU Runtime Predictor (DeepView.Predict)

{O*O: Model Code | N —— I Performance
= Profile OR'L Ve scalllip .Il Predictions
Operations (
m ChosenGPU —{ 4 i gie’s| Pre-Trained MLPs - Iteration Execution Time
« Training Throughput

Pick the best GPU for your training job, whether it is:

- Deciding which new GPU to purchase for your local workstation
- Which cloud GPU instance to pick

- Efficiently schedule jobs in a heterogeneous GPU cluster

Tedious to benchmark model on all the available GPUs. (e

=1 4
—

GPU Runtime Predictor (DeepView.Predict)

{O*O: Model Code | N ———— I Performance
= Profile OR'L Ve scalllip .Il Predictions
Operations [-
- ChosenGPU ——»{ 3 i ie’s Pre-Trained MLPs « Iteration Execution Time
« Training Throughput

Wave Scaling - If the same kernels execute on the source and
target GPUs, then scale based on hardware parameters.

Pre-Trained MLPs - If not, learn runtimes of different
operators with a pretrained model.

/ 7
e

=1 4
==

GPU Runtime Predictor (DeepView.Predict)

Why predict? Why not

—

->
->
->

Measure the performance directly?
Apply heuristics?
Use standard benchmarks?

Always use the best available GPU?

/ 7
e

Sé

15

Aren’t more powerful GPUs better?

Not all the time! Not alwa Small inputs underutilize GPU.

convnext_small ps=1 image_size=56 |

—

BN runtime_ms

100 -
80
60 -
40 1
201
0 -

o

<

<

< .
[l

A100
RTX2080Ti
RTX3090

target_device

e A40.

convnext_smallfbs=8 image_size=128 |

2000 1

1500 A

1000 A

500 -

A100

T4
RTX2080Ti
RTX3090

target_device

B runtime_ms

A40

Aren’t more powerful GPUs better?

Small models under-utilize GPU.

Z’”//T;onvnext_large qs= 1 image_size=56

500 A BN runtime_ms

BN runtime_ms
100 -
400 -
80
300 A
60 -
200 A
40 1
201 100 -
0- 0-
o
<
<

o .
[l

| convnext_small Hs=1 image_size=56

<
[l

o
<
<

A100

RTX2080Ti

RTX3090
A100
RTX2080Ti
RTX3090

target_device target_device

‘@W\L 17

Which GPUs are supported?

Generation \ Use Case

Pascal

Volta

Turing

Tesla

Ampere

Hopper

- Beta

Desktop/Consumer

GTX1080Ti

RTX2070
RTX2080Ti

RTX3090

- Deprecated / Not available

Workstation/Server

Quadro P4000
P4
P100

V100

Quadro RTX4000

T4

A100
A40
A4000

H100 (coming soon)

Runtime (ms)

How accurate is DeepView.Predict?

Habitat Runtime Predictions (RTX3090 — A40)
120 T T

Habitat Runtime Predictions (RTX3090 — A4000)

. 200 T
4% HEEl Actual (ms) 4% Il Actual (ms)
6% B Predicted (ms) 175 B Predicted (ms) -
100 [E
150 |
80
= 1251
g
60 £ 100
E
~ 751

40

50
20
25

o 5 2 5 2 . g = g 2
g g 8 kT 5) g 2 2

8 & i3 - < C 5 :

<] 7] = g 3

] 2 k= =

model model

Prediction errors are generally no more than 10%.

Cloud Deployment

Profiling

Deployment

Deployment Target

Estimation for (LY total iterations

Providers

Filter by provider

All

Total Cost (US dollars)

Filter by GPU Filter Max Number of GPUs:
All 12 4 m
$60-
® @ %) ® google
@ azure
&
$45- 6]
o @ @
: @ @
30
* @ ®
o8 o °
$15+
® [J g
$0 T T T y
0 5 10 15 20

Total Training time (hrs)

Deployment Plan

2

GPU

p100

nl-standard-1

Estimated Cost: $20

Estimated Training Time: 3.4 Hours

Num. GPU

4

VRAM

16 GB

CentML DeepView
documentation

Q Search the docs ...

CentML DeepView

GETTING STARTED

Quick Start v

PROFILER HOW-TO GUIDE

Providers

Remote Profiling

Runtime Report

Memory Report

DEVELOPER GUIDE

DeepView.Profile

DeepView.Predict

REFERENCES

Python API v

Index

Theme by the Executable Book Project

CentML DeepView

Contents

HH
e}
e

Getting Started

Index

CentML DeepView provides an integrated experience which allows ML practioners to:

Visually identify model bottlenecks

Perform rapid iterative profiling

Predict deployment time and cost to cloud hardware

[
7 def skyline model provider():

8 return resnet. resnet50() .cuda()

9

10

11 def skyline input provider(batch_size=16):

2 return (

13 torch. randn((batch_size, 3, 224, 224)).cuda(),
14 torch. randint (Low=0, high=1606,

15 size=(batch size,)).cudal),
16)

17

18

19 def skyline iteration provider(model):

20 optimizer = torch.optin.SGD(model.parameters(),
21 Ur=le-3)

22 loss_fn = torch.nn.CrossEntropyloss()

23 def iteration(inputs, targets):

24 optimizer.zero_grad()

25 out = model (inputs)

26 loss = loss_fn(out, targets)

27 loss.backward()

28 optimizer.step()

29 return iteration

Understand energy consumption and environmental impacts of training jobs

Project Information

Project Root ' /hese/ybgsa/atiosta/skyLine/snarples/resme
[—

Training Schedule
s

2000
“obmit
Promiing Deploymen

T peakmremory usage

i
1719

[r——
Camery

b 25770
- wegasytes

Throughput

Tunoerer

Getting Started
Follow the instructions depending on your setup

« Local workstation GPU
« Remote GPU with SSH access

« Clusters, containers, and other setups where SSH is not possible

DeepView.Profile

Deepview.Profile is our free and open source tool provides easier way to identify bottlenecks and
perform rapid iterative profiling for Deep Learning. To find out more, visit DeepView.Profile

DeepView.Predict

DeepView.Predict is a tool that predicts a deep neural network’s training iteration execution time on a
given GPU. It currently supports PyTorch. To find out more, visit DeepView.Predict

Get started with DeepView at docs.centml . ai!

entML)

1

What we do: system-level optimizations

Models
, ResNet GPT3 BERT SSD
‘; entML expertise Algorithms

SGD without momentum SGD with momentum

Profiling Tool: 9 4 Frameworks N\
DeepView
b PYTORCH @xnet
TensorFlow
System-Level : : '
Optimizations Libraries and ML Compilers
\ cuDNN TVM
Hardware-Specific
Optimizations Hardware
— T
GPU 5 ——
aWS A100

/ Microsoft Google Cloud 22
Azure

Additional Optimizations: Horizontal Fusion

Horizontally fused
training array for
efficient training

- Best for training
small models +
hyper-parameter
tuning

/ 7
e

= 4
—r

Thank youl!

Please provide your
feedbacks at:

To learn more about DeepView, visit . —

! = '%7' ElC

docs.centml.ai E:l.f“;‘hq-.
it

Also check us out at centml. ai, gl by !

[/
or contact us at ybgao@centml.ai [=]d:

