Agenda

- 3:20 to 3:40: Coffee Break
- 3:40 to 4:00: Brief Introduction to CUDA Programming
- 4:00 to 5:00: Build Tensor Programs with Hidet in Python
 - Part 1: Introduction to Deep Learning Compiler Hidet
 - Part 2: Interactive Demos on how to use Hidet (with Jupyter Notebooks)

Tutorial Website

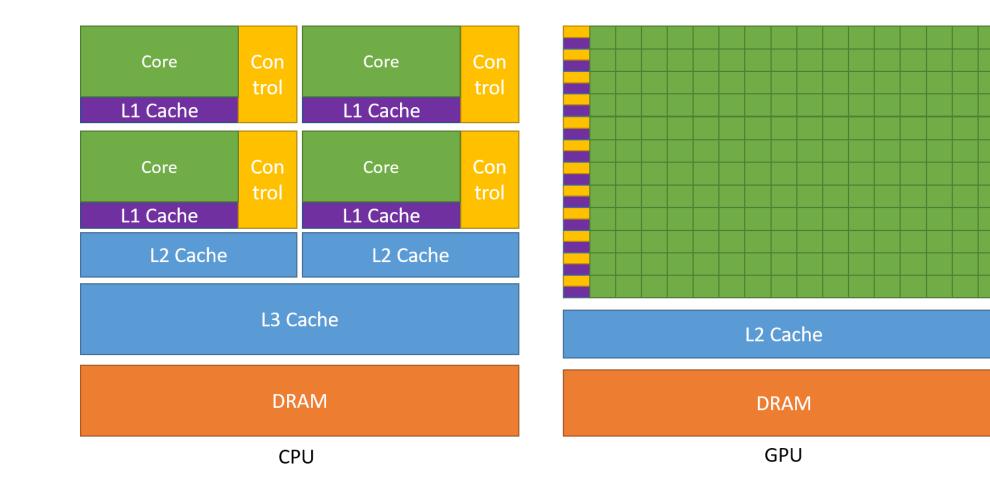
A Brief Introduction to CUDA Programming

Yaoyao Ding

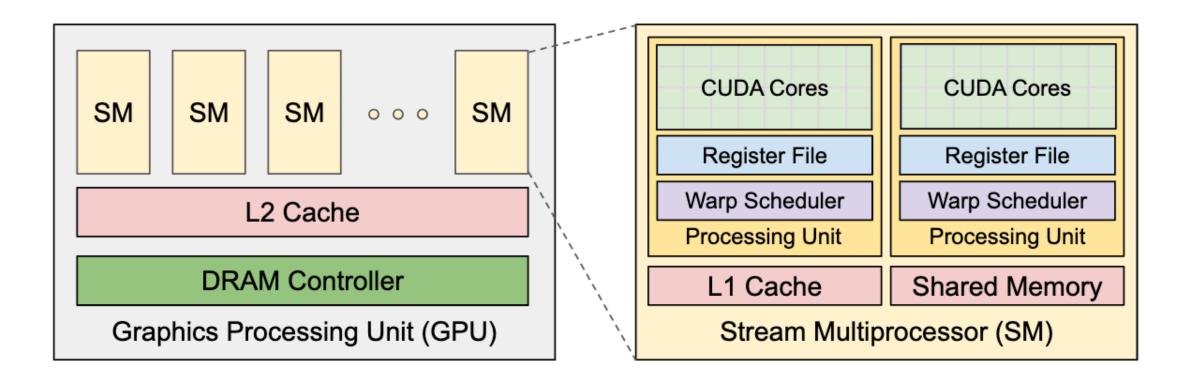
yaoyao@cs.toronto.edu

Contents are adopted from NVIDIA's CUDA C++ Programming Guide

CPU vs. GPU



Inside a NVIDIA GPU



CUDA Kernel and Its Invocation

```
// Kernel definition
___global___ void VecAdd(float* A, float* B, float* C)
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}
int main()
    . . .
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
    . . .
```

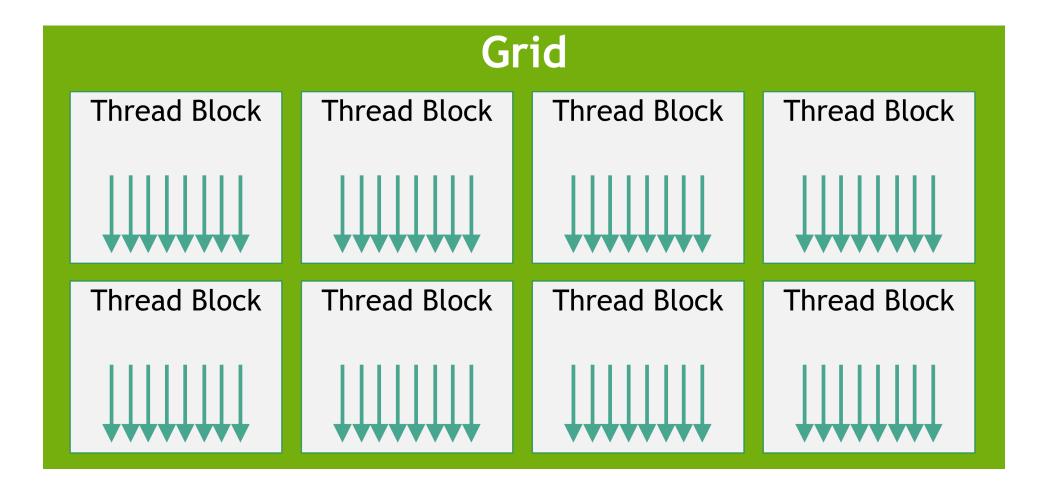
Something New:

- __global__
- threadIdx.x
- <<<1, N>>>

Thread Hierarchy: Up to 3 dimensions

```
// Kernel definition
___global___void MatAdd(float A[N][N], float B[N][N],
                        float C[N][N])
{
    int i = threadIdx.x;
    int j = threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}
int main()
{
    . . .
    // Kernel invocation with one block of N * N * 1 threads
    int numBlocks = 1;
    dim3 threadsPerBlock(N, N);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    . . .
```

Thread Hierarchy: Thread, Thread Block, Grid



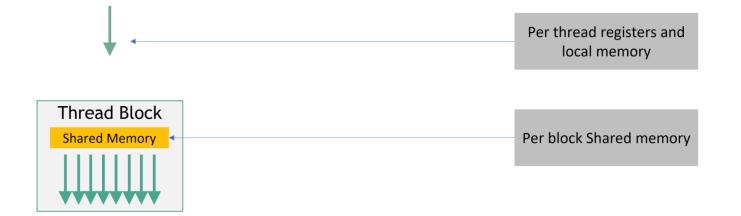
Thread Hierarchy

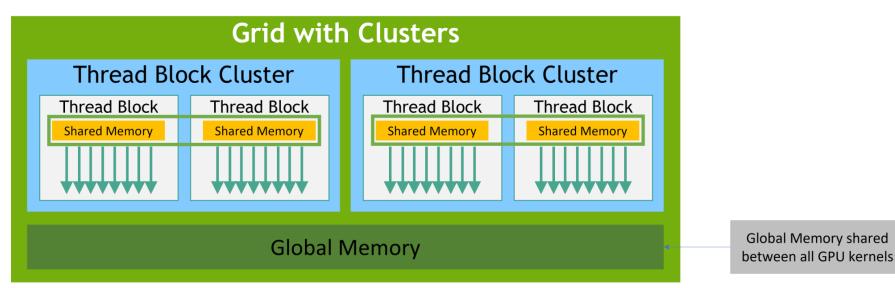
```
// Kernel definition
___global___ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
Ł
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N \&\& j < N)
        C[i][j] = A[i][j] + B[i][j];
}
int main()
{
    . . .
    // Kernel invocation
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    . . .
```

Threads in a block can cooperate by:

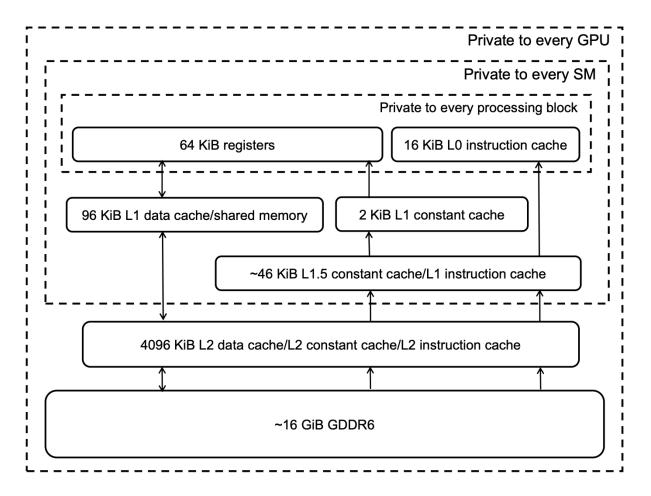
- Shared memory, and
- Synchronizing their execution via __syncthreads()

Memory Hierarchy





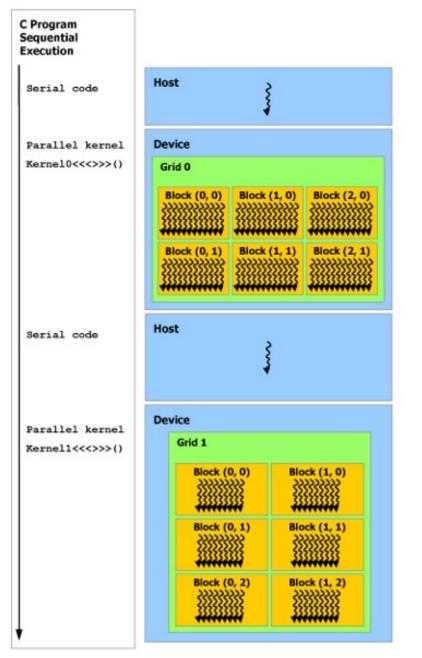
Memory Hierarchy



Memory hierarchy of the Turing T4 GPU (TU104)

NVIDIA T4 GPU Latency:

- Shared memory: 19 cycles
- Global memory:
 - L1 hit: 32 cycles
 - L2 hit: ~188 cycles
 - L2 miss & TLB hit: 296 cycles
 - L2 miss & TLB miss: 616 cycles



Heterogeneous Programming

Device Memory

Host Memory

Device Memory

Example: Vector Addition

```
__global__ void add_kernel(int *a, int *b, int *c, int n) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < n) {
        c[i] = a[i] + b[i];
    }
}</pre>
```

Example: Matrix Multiplication (Matmul)

```
__global__ void matmul_kernel(float *a, float *b, float *c, int n) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < n && j < n) {
        float acc = 0.0;
        for (int k = 0; k < n; k++) {
            acc += a[i * n + k] * b[k * n + j];
        }
        c[i * n + j] = acc;
    }
}</pre>
```

GitHub: www.github.com/hidet-org/hidet
Installation: pip install hidet
Usage: torch.compile(model, backend='hidet')

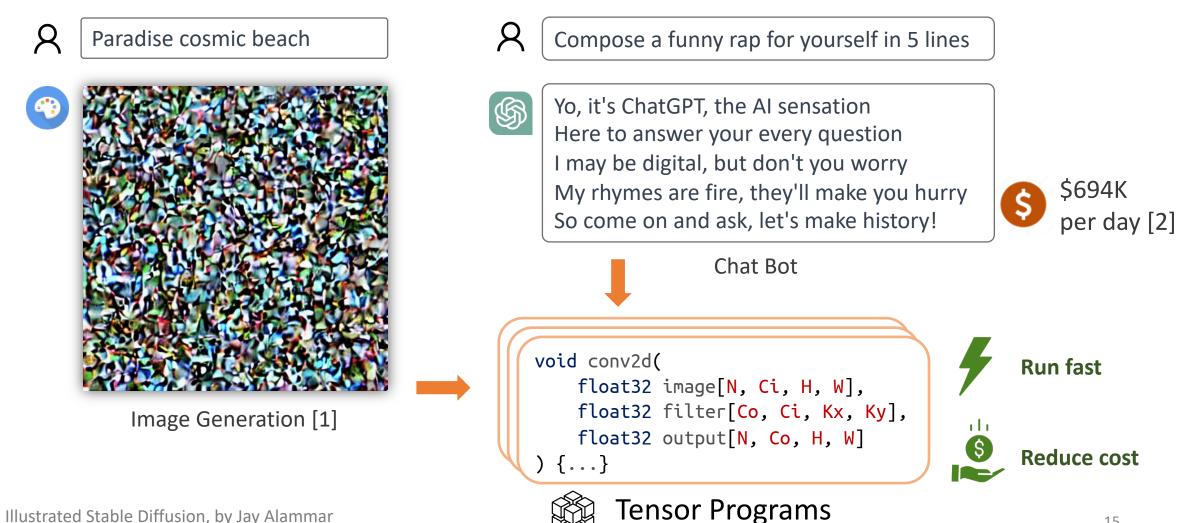
Hidet: An Open-Source Deep Learning Compiler

Yaoyao Ding

yaoyao@cs.toronto.edu

github.com/hidet-org/hidet

Tensor Programs are Everywhere



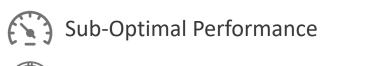
[1] The Illustrated Stable Diffusion, by Jay Alammar

[2] https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

Tensor Program Generation & Optimization

- Vendor Library (Manually optimization)
- State-of-the-art Tensor Compiler: State-of-the-art Tensor Compiler:

Limited Support for Non-Loop-Oriented Optimizations



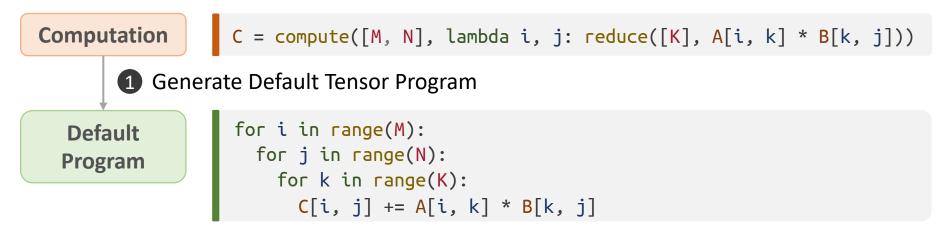
Long Optimization Time (e.g., hours)

Task-Mapping Programming Paradigm (ours)

Good Support for Non-Loop-Oriented Optimizations Up to 1.4x Better Performance

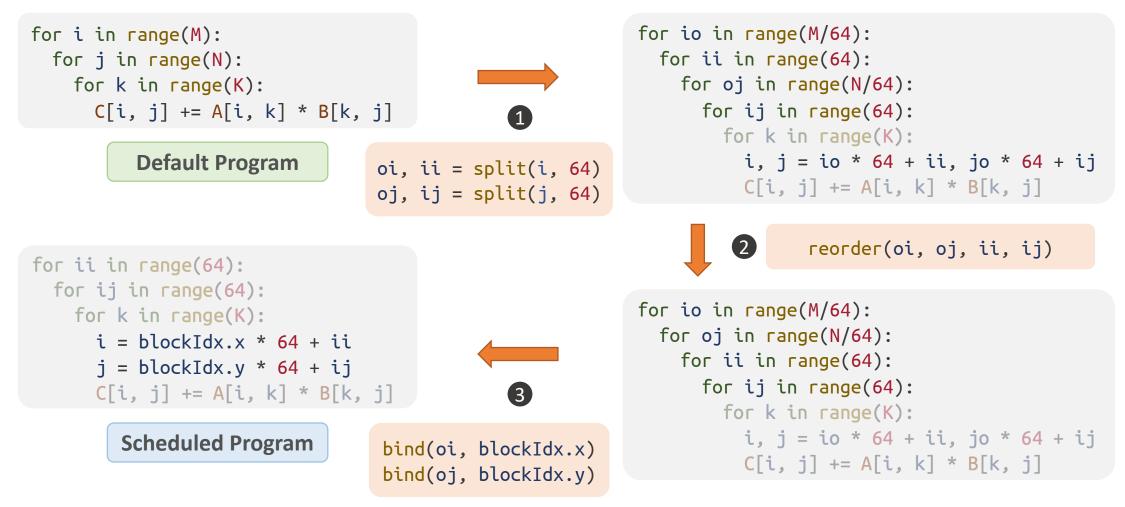
11x Less Optimization Time

Deep Learning Compiler: TVM



Schedule Primitives	Original Program	Scheduled Program
fuse(i, j)	for i in range(128): for j in range(4): body(i, j)	for ij in range(512): body(ij / 4, ij % 4)
split (i, 128)	for i in range(512): body(i)	for oi in range(4): for ii in range(128): body(oi * 128 + ii)
reorder(i, j)	for i in range(128): for j in range(4): body(i, j)	for j in range(4): for i in range(128): body(i, j)
<pre>bind(i, threadIdx.x)</pre>	for i in range(128): body(i)	body(threadIdx.x)

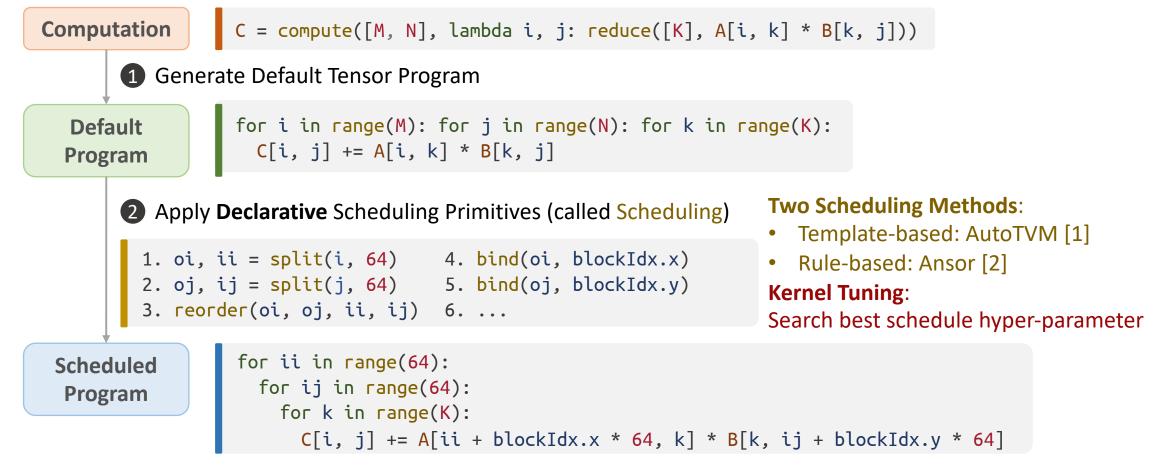
Apply Declarative Scheduling Primitives



github.com/hidet-org/hidet

For simplicity, we assume M and N are a multiple of 64.

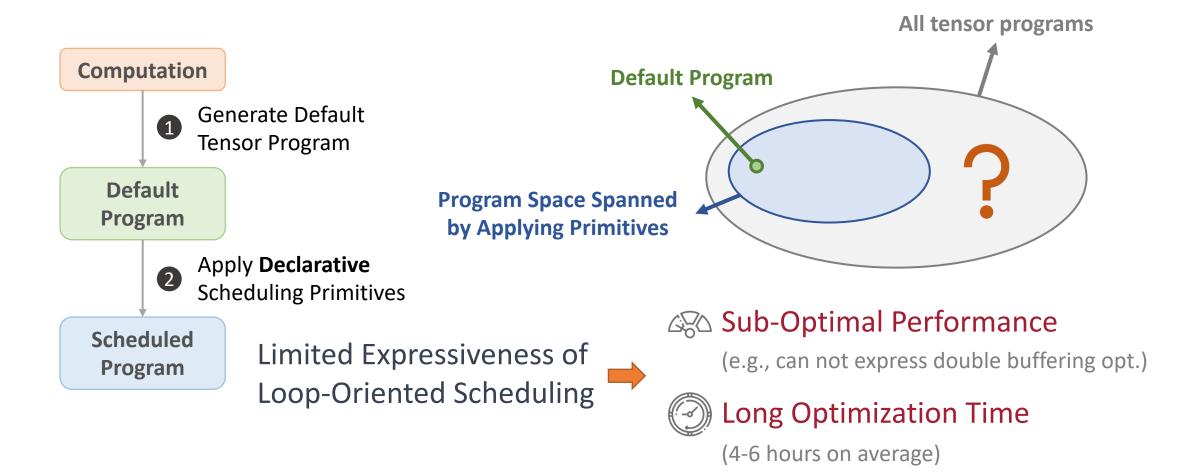
Deep Learning Compiler: TVM



Declarative Loop-Oriented Scheduling

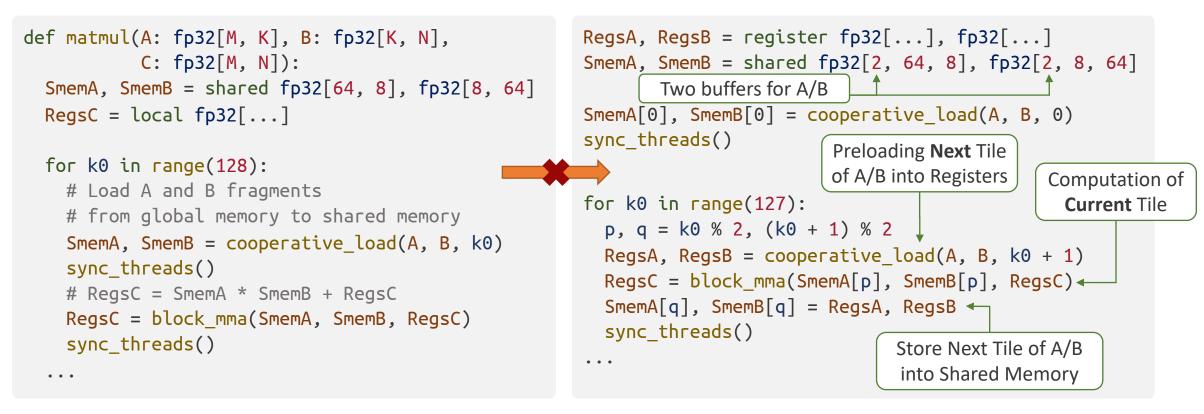
[1] Chen, Tianqi, et al. "Learning to optimize tensor programs." NeurIPS 2018.github.com/hidet-org/hidet[2] Zheng, Lianmin, et al. "Ansor: Generating high-performance tensor programs for deep learning." OSDI 2020.

Limitation of Loop-Oriented Scheduling



github.com/hidet-org/hidet

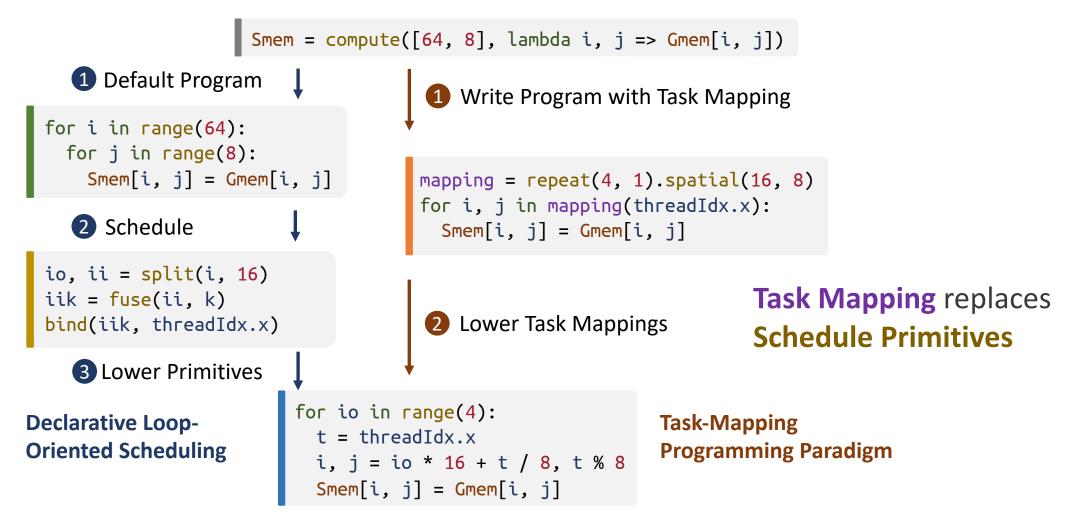
An Example of Non-Loop-Oriented Optimization



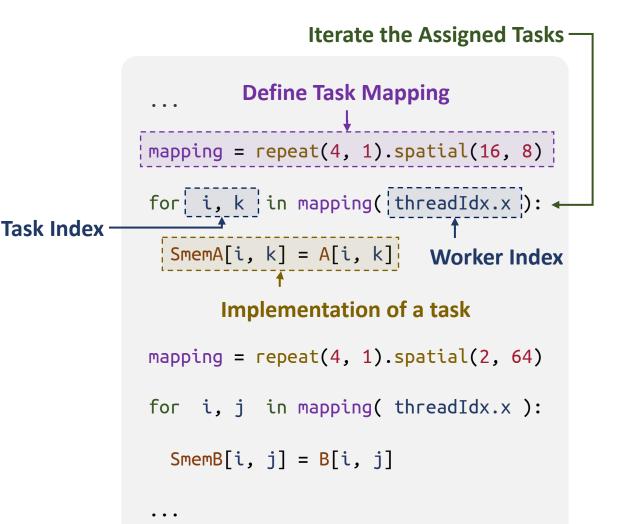
Matrix Multiplication without Double Buffering

Matrix Multiplication with Double Buffering

Key Idea: Task Mapping Programming Paradigm



Definition, Usage and Pros of Task Mapping



> High Flexibility:

Allow developer to manipulate tensor programs in fine granularity => More Optimizations and Better Performance

Efficient Partial Tile:
 Add the predicate inside the loop body
 => Reduce Tuning Space & Optimization Time

Post Scheduling Fusion: Automatically fuse surrounding operators

=> Less Memory Transfer and Better Performance

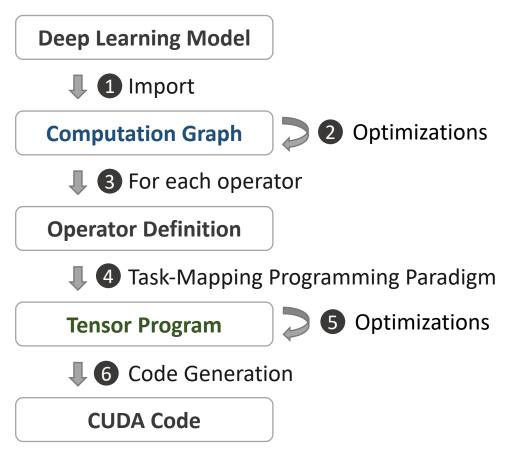
Implementation

• Hidet

A Deep Learning Compiler from Scratch

- Intermediate Representations (IRs)
 - High Level: Computation Graph IR
 - Low Level: Tensor Program IR
- Two Scheduling Machanisms at
 - Template-based Scheduling
 - Rule-based Scheduling

GitHub: www.github.com/hidet-org/hidet
Installation: pip install hidet
Usage: torch.compile(model, backend='hidet')



Hidet Compilation Flow

Practice Session

Tutorial Website

github.com/hidet-org/hidet