
Agenda

• 3:20 to 3:40: Coffee Break
• 3:40 to 4:00: Brief Introduction to CUDA Programming
• 4:00 to 5:00: Build Tensor Programs with Hidet in Python
• Part 1: Introduction to Deep Learning Compiler Hidet
• Part 2: Interactive Demos on how to use Hidet (with Jupyter Notebooks)

Tutorial Website



A Brief Introduction to CUDA Programming
Yaoyao Ding
yaoyao@cs.toronto.edu

Contents are adopted from NVIDIA’s CUDA C++ Programming Guide



CPU vs. GPU



Inside a NVIDIA GPU



CUDA Kernel and Its Invocation

Something New:
• __global__
• threadIdx.x
• <<<1, N>>>



Thread Hierarchy: Up to 3 dimensions



Thread Hierarchy: Thread, Thread Block, Grid



Thread Hierarchy

Threads in a block can cooperate by:
• Shared memory, and
• Synchronizing their execution

via __syncthreads()



Memory Hierarchy



Memory Hierarchy

Memory hierarchy of the Turing T4 GPU (TU104)

Reference: Dissecting the NVidia Turing T4 GPU via Microbenchmarking

NVIDIA T4 GPU Latency:
• Shared memory: 19 cycles
• Global memory:  

• L1 hit: 32 cycles
• L2 hit: ~188 cycles
• L2 miss & TLB hit: 296 cycles
• L2 miss & TLB miss: 616 cycles



Heterogeneous 
Programming

Device Memory

Host Memory

Device Memory



Example: Vector Addition



Example: Matrix Multiplication (Matmul)



Hidet: 
An Open-Source Deep Learning Compiler
Yaoyao Ding
yaoyao@cs.toronto.edu

github.com/hidet-org/hidet

GitHub: www.github.com/hidet-org/hidet
Installation: pip install hidet

Usage: torch.compile(model, backend=‘hidet’)



Tensor Programs are Everywhere
Paradise cosmic beach

Image Generation [1]

Yo, it's ChatGPT, the AI sensation 
Here to answer your every question 
I may be digital, but don't you worry 
My rhymes are fire, they'll make you hurry
So come on and ask, let's make history!

Compose a funny rap for yourself in 5 lines

Chat Bot

void conv2d(
float32 image[N, Ci, H, W],  
float32 filter[Co, Ci, Kx, Ky],
float32 output[N, Co, H, W]

) {...}

Tensor Programs [1] The Illustrated Stable Diffusion, by Jay Alammar
[2] https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

Run fast

Reduce cost

$694K 
per day [2]
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Tensor Program Generation & Optimization

Ø Task-Mapping Programming Paradigm (ours)

Ø Vendor Library (Manually optimization)

Ø State-of-the-art Tensor Compiler:         Apache TVM

Sub-Optimal Performance

Long Optimization Time (e.g., hours)

11x Less Optimization Time

Limited Support for 
Non-Loop-Oriented Optimizations
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Good Support for 
Non-Loop-Oriented Optimizations

Up to 1.4x Better Performance



Deep Learning Compiler: TVM
Computation

Default
Program

C = compute([M, N], lambda i, j: reduce([K], A[i, k] * B[k, j]))

for i in range(M):
for j in range(N): 
for k in range(K):
C[i, j] += A[i, k] * B[k, j]

1 Generate Default Tensor Program 

2 Apply Declarative Scheduling Primitives 

github.com/hidet-org/hidet



Apply Declarative Scheduling Primitives 

Default Program

for i in range(M):
for j in range(N):  

for k in range(K):
C[i, j] += A[i, k] * B[k, j]

for io in range(M/64):
for ii in range(64):
for oj in range(N/64):  
for ij in range(64):

i, j = io * 64 + ii, jo * 64 + ijoi, ii = split(i, 64)
oj, ij = split(j, 64)

for io in range(M/64):
for oj in range(N/64):
for ii in range(64):
for ij in range(64):

reorder(oi, oj, ii, ij)

i = blockIdx.x * 64 + ii
j = blockIdx.y * 64 + ij

bind(oi, blockIdx.x) 
bind(oj, blockIdx.y)

Scheduled Program

1

2
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For simplicity, we assume M and N are a multiple of 64.
github.com/hidet-org/hidet



Deep Learning Compiler: TVM
Computation

Default
Program

Scheduled
Program

C = compute([M, N], lambda i, j: reduce([K], A[i, k] * B[k, j]))

for i in range(M): for j in range(N): for k in range(K):
C[i, j] += A[i, k] * B[k, j]

1. oi, ii = split(i, 64)
2. oj, ij = split(j, 64)
3. reorder(oi, oj, ii, ij)

4. bind(oi, blockIdx.x) 
5. bind(oj, blockIdx.y)
6. ...

for ii in range(64): 
for ij in range(64): 
for k in range(K):
C[i, j] += A[ii + blockIdx.x * 64, k] * B[k, ij + blockIdx.y * 64] 

1 Generate Default Tensor Program 

2 Apply Declarative Scheduling Primitives (called Scheduling) 

Declarative Loop-Oriented Scheduling

Two Scheduling Methods:
• Template-based: AutoTVM [1]
• Rule-based: Ansor [2]
Kernel Tuning:
Search best schedule hyper-parameter

[1] Chen, Tianqi, et al. "Learning to optimize tensor programs." NeurIPS 2018.
[2] Zheng, Lianmin, et al. "Ansor: Generating high-performance tensor programs for deep learning." OSDI 2020.

github.com/hidet-org/hidet



Limitation of Loop-Oriented Scheduling

Computation

Default
Program

Scheduled
Program

1 Generate Default 
Tensor Program 

2
Apply Declarative 
Scheduling Primitives 

Default Program

Program Space Spanned 
by Applying Primitives

All tensor programs

Sub-Optimal Performance

Long Optimization Time

Limited Expressiveness of 
Loop-Oriented Scheduling

(4-6 hours on average)

(e.g., can not express double buffering opt.)

github.com/hidet-org/hidet



An Example of Non-Loop-Oriented 
Optimization
def matmul(A: fp32[M, K], B: fp32[K, N], 

C: fp32[M, N]):
SmemA, SmemB = shared fp32[64, 8], fp32[8, 64]
RegsC = local fp32[...]

for k0 in range(128):
# Load A and B fragments 
# from global memory to shared memory
SmemA, SmemB = cooperative_load(A, B, k0)
sync_threads()
# RegsC = SmemA * SmemB + RegsC
RegsC = block_mma(SmemA, SmemB, RegsC) 
sync_threads()

... 

RegsA, RegsB = register fp32[...], fp32[...]
SmemA, SmemB = shared fp32[2, 64, 8], fp32[2, 8, 64]

SmemA[0], SmemB[0] = cooperative_load(A, B, 0)
sync_threads() 

for k0 in range(127):
p, q = k0 % 2, (k0 + 1) % 2
RegsA, RegsB = cooperative_load(A, B, k0 + 1)
RegsC = block_mma(SmemA[p], SmemB[p], RegsC)
SmemA[q], SmemB[q] = RegsA, RegsB
sync_threads()

...

Matrix Multiplication without Double Buffering Matrix Multiplication with Double Buffering

Two buffers for A/B

Preloading Next Tile 
of A/B into Registers Computation of 

Current Tile

Store Next Tile of A/B 
into Shared Memory

github.com/hidet-org/hidet



Key Idea: Task Mapping Programming Paradigm

for i in range(64):
for j in range(8):

Smem[i, j] = Gmem[i, j]

io, ii = split(i, 16)
iik = fuse(ii, k)
bind(iik, threadIdx.x)

for io in range(4):
t = threadIdx.x
i, j = io * 16 + t / 8, t % 8
Smem[i, j] = Gmem[i, j]

mapping = repeat(4, 1).spatial(16, 8)
for i, j in mapping(threadIdx.x):
Smem[i, j] = Gmem[i, j]

Smem = compute([64, 8], lambda i, j => Gmem[i, j])

1

2

3

1

2

Lower Primitives

Schedule

Default Program
Write Program with Task Mapping

Lower Task Mappings

Declarative Loop-
Oriented Scheduling

Task-Mapping 
Programming Paradigm

Task Mapping replaces 
Schedule Primitives

github.com/hidet-org/hidet



Definition, Usage and Pros of Task Mapping

...

mapping = repeat(4, 1).spatial(16, 8)

for i, k in mapping( threadIdx.x ):

SmemA[i, k] = A[i, k]

mapping = repeat(4, 1).spatial(2, 64)

for i, j in mapping( threadIdx.x ):

SmemB[i, j] = B[i, j]

...

Define Task Mapping

Worker Index
Task Index

Implementation of a task

Iterate the Assigned Tasks

Ø Efficient Partial Tile:
Add the predicate inside the loop body

Ø Post Scheduling Fusion:
Automatically fuse surrounding operators

Ø High Flexibility:
Allow developer to manipulate 
tensor programs in fine granularity
=> More Optimizations and Better Performance

=> Reduce Tuning Space & Optimization Time

=> Less Memory Transfer and Better Performance

github.com/hidet-org/hidet



Implementation

• Hidet
A Deep Learning Compiler from Scratch

• Intermediate Representations (IRs)
• High Level: Computation Graph IR
• Low Level: Tensor Program IR

• Two Scheduling Machanisms at
• Template-based Scheduling
• Rule-based Scheduling

Deep Learning Model

Computation Graph

Operator Definition

Tensor Program

CUDA Code

Import

For each operator

Task-Mapping Programming Paradigm

Code Generation

Optimizations

Optimizations
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Hidet Compilation Flow
github.com/hidet-org/hidet

GitHub: www.github.com/hidet-org/hidet
Installation: pip install hidet

Usage: torch.compile(model, backend=‘hidet’)



Practice Session

Tutorial Website

github.com/hidet-org/hidet


